# **C.U.SHAH UNIVERSITY** Winter Examination-2022

### Subject Name: Transform Methods

| Subject Code: 4SC05TRM1Branch: B.Sc. (Mathematics)                                                                                                                                                                                                                                                                                           |                                                               |                                                          | ics)                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------|
| Seme                                                                                                                                                                                                                                                                                                                                         | ester: 5 Date: 28/11/2022                                     | Time: 02:30 To 05:30                                     | Marks: 70           |
| <ul> <li>Instructions:</li> <li>(1) Use of Programmable calculator &amp; any other electronic instrument is prohibited.</li> <li>(2) Instructions written on main answer book are strictly to be obeyed.</li> <li>(3) Draw neat diagrams and figures (if necessary) at right places.</li> <li>(4) Assume suitable data if needed.</li> </ul> |                                                               |                                                          |                     |
| Q-1                                                                                                                                                                                                                                                                                                                                          | Attempt the following questions:                              |                                                          | (14)                |
| a)                                                                                                                                                                                                                                                                                                                                           | Define: Laplace Transform                                     |                                                          | (01)                |
| b)                                                                                                                                                                                                                                                                                                                                           | State Dirichlet's conditions for Fouri                        | er series.                                               | (02)                |
| c)                                                                                                                                                                                                                                                                                                                                           | Find: $L(\sin^2 t + \cos^2 t + 3)$                            |                                                          | (02)                |
| d)                                                                                                                                                                                                                                                                                                                                           | Find 1*1                                                      |                                                          | (02)                |
| e)                                                                                                                                                                                                                                                                                                                                           | In the Fourier series expansion of $f$ (                      | $(x) = \cos x$ in $(-\pi, \pi)$ , the value of $b_{\mu}$ | $_{n} = \$ (01)     |
| f)                                                                                                                                                                                                                                                                                                                                           | What is the value of $a_0$ in the Fourier Define: Z-transform | series expansion of $f(x) = x^2$ in (1)                  | (02),(02),(02),(02) |
| <b>b</b> )                                                                                                                                                                                                                                                                                                                                   | Prove that $Z(n) = \frac{z}{(z-1)^2}$ .                       |                                                          | (02)                |
| Attemp                                                                                                                                                                                                                                                                                                                                       | pt any four questions from Q-2 to Q-                          | 8                                                        |                     |
| Q-2                                                                                                                                                                                                                                                                                                                                          | Attempt all questions                                         |                                                          | (14)                |
| a)                                                                                                                                                                                                                                                                                                                                           | Solve the differential equation $(y'' + 3)$                   | $3y'+2y = e^t$ ; $y(0) = 1, y'(0) = 0$ by                | using (07)          |
|                                                                                                                                                                                                                                                                                                                                              | laplace transformation.                                       |                                                          |                     |
| b)                                                                                                                                                                                                                                                                                                                                           | Find: $L^{-1}\left(\log\left(1+\frac{1}{s^2}\right)\right)$   |                                                          | (04)                |
| c)                                                                                                                                                                                                                                                                                                                                           | Find Laplace transformation of cos 3                          | <i>t</i> by using the definition of it.                  | (03)                |
| Q-3                                                                                                                                                                                                                                                                                                                                          | Attempt all questions                                         |                                                          | (14)                |
| a)                                                                                                                                                                                                                                                                                                                                           | Obtain Fourier series of $f(x) = e^{ax}$ in                   | $(-\pi,\pi)$ .                                           | (05)                |



**b**) Find the Fourier series of 
$$f(x) = \begin{cases} x, & 0 < x < \pi \\ 2\pi - x, & \pi < x < 2\pi \end{cases}$$
 and hence prove that (05)

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$

c) Find the half range sine series of  $f(x) = \pi - x in(0, \pi)$ . (04)

### Q-4 Attempt all questions (14)

a) State and prove Convolution theorem. (07)

**b**) Find: 
$$L^{-1}\left(\frac{5s^2+3s-16}{(s-1)(s-2)(s+3)}\right)$$
 (04)

(03)

(14)

(03)

(14)

(14)

c) State and prove First Shifting theorem.

#### Q-5 Attempt all questions

- **a**) Find the Fourier series of  $f(x) = x^3 in(0,2)$ . (07)
- **b**) Find the half range cosine series of  $f(x) = (x-1)^2 in(0,1)$ . (04)
- c) Find Z-transform of  $n \sin n\theta$ .

## Q-6 Attempt all questions

**a**) Find 
$$L^{-1}\left(\frac{1}{\left(s^2+a^2\right)^2}\right)$$
 by using Convolution theorem. (05)

**b**) Find: 
$$L(te^{-2t}\cos t)$$
 (05)

c) Evaluate: 
$$\int_{0}^{\infty} \frac{e^{-t} \sin t}{t} dt$$
 (04)

#### Q-7 Attempt all questions

**a**) Find fourier integral representation of the function  $f(x) = \begin{cases} -e^{kx} , & x < 0 \\ e^{-kx} , & x > 0 \end{cases}$  and (07)

hence evaluate 
$$\int_{0}^{\infty} \frac{\lambda \sin \lambda x}{k^{2} + \lambda^{2}} d\lambda = \frac{\pi}{2} e^{-kx}.$$

**b**) Find Fourier transform of 
$$f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| > 1 \end{cases}$$
 and hence evaluate  $\int_{0}^{\infty} \frac{\sin x}{x} dx.$  (07)

### Q-8 Attempt all questions (14)

- **a**) If  $Z(u_n) = U(z)$  then  $Z(u_{n-k}) = z^{-k}U(z)$ , where k > 0 (05)
- **b**) Find the *Z*-transform of  $a^n \cosh n\theta$ . (05)
- c) State and prove multiplication by *n* rule for Z-transform and also write its (04) generalized form.

Page **2** of **2** 

